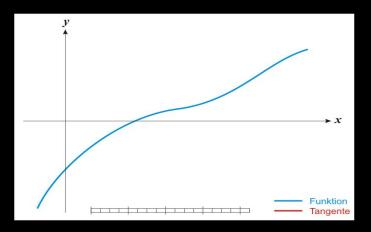

Apparent Horizon Finder

Tiago França, Queen Mary University of London

- Short version: an apparent horizon (AH) is the outermost 2D trapped surface, where the "expansion", O, is zero
- This is the surface where the area of a spherical flash of light rays emitted radially outwards will remain constant.
- Apparent horizon is inside the event horizon. Coincides in static case
- In binaries, a 3rd and 4th AH appear when merging


Numerical Methods for Star-shaped AHs

GRchombo's AHFinder discretizes the 2D AH surface and uses a quasi-Newton method from the PETSc library to find the zero of the expansion for star-shaped horizon, given some initial guess.

Newton's Method (1D):

$$f_{n+1} = f_n - \gamma \left(\Theta'(f_n)\right)^{-1} \Theta(f_n) , \quad 0 < \gamma \le 1$$

Not so easy

Images from M. Alcubierre, Introduction to 3+1 Numerical Relativity

Image from Wikipedia

AHFinder Class

How to use?

- 1) Install PETSc and change Chombo's Make.defs.local -> see full slides
- 2) Change your Example -> see full slides
- 3) Add parameters to 'params.txt' file
- 4) What is the output?

Quick version: consult BinaryBH / KerrBH Examples as a reference

AHFinder – How to use

3) Add parameters to 'params.txt' file

```
#Apparent Horizon finder
AH_activate = 1
AH_num_ranks = 65
AH_num_points_u = 65
AH_num_points_v = 48
#AH_solve_interval = 1
#AH_print_interval = 1
#AH_track_center = true
#AH_predict_origin = true
#AH_level_to_run = 0
#AH_start_time = 0.
#AH_give_up_time = -1.
```

```
#AH merger search factor = 1.
#AH merger pre factor = 1.
#AH allow re attempt = 0
#AH max fails after lost = -1
#AH verbose = 1
#AH print geometry data = 0
#AH re solve at restart = 0
#AH stop if max fails = 0
#AH 1 initial guess = 0.3
#AH 2 initial guess = 0.3
#AH num extra vars = 2
#AH extra vars = chi d1 Ham d2 A11
AH set origins to punctures = 1
```

- params.txt: there are many AH parameters. The commented values are the default values. Consult AHParams.hpp for more information (meaning and default values).

AHFinder – How to use 4) What is the output? Part I - Command Line

stats AH3.out

BinaryBH 000172.3d.hdf5	coords AH2 0022.out	coords AH3 0071.out	coords AH3 0131.out	pout.88
BinaryBH 000176.3d.hdf5	coords AH2 0023.out	coords AH3 0072.out	coords AH3 0132.out	
BinaryBH 000180.3d.hdf5	coords AH2 0024.out	coords AH3 0073.out	coords_AH3_0133.out	pout.89
BinaryBH 000184.3d.hdf5	coords AH2 0025.out	coords AH3 0074.out	coords AH3 0134.out	pout.9
BinaryBH 000188.3d.hdf5	coords AH2 0026.out	coords AH3 0075.out	coords AH3 0135.out	pout.90
BinaryBH 000192.3d.hdf5	coords AH2 0027.out	coords AH3 0076.out	coords AH3 0136.out	pout.91
BinaryBH_000196.3d.hdf5	coords AH2 0028.out	coords AH3 0077.out	coords_AH3_0137.out	pout.92
BinaryBH_000200.3d.hdf5	coords_AH2_0029.out	coords_AH3_0078.out	coords_AH3_0138.out	pout.93
coords_AH1_0000.out	coords_AH3_0019.out	coords_AH3_0079.out	coords_AH3_0139.out	pout.94
coords_AH1_0001.out	coords_AH3_0020.out	coords_AH3_0080.out	coords_AH3_0140.out	pout.95
coords_AH1_0002.out	coords_AH3_0021.out	coords_AH3_0081.out	coords_AH3_0141.out	
coords_AH1_0003.out	coords AH3 0022.out	coords AH3 0082.out	coords AH3 0142.out	pout.96
coords AH1 0004.out	coords AH3 0023.out	coords AH3 0083.out	coords_AH3_0143.out	pout.97
coords AH1 0005.out	coords AH3 0024.out	coords AH3 0084.out	coords_AH3_0144.out	pout.98
coords AH1 0006.out	coords AH3 0025.out	coords AH3 0085.out	coords AH3 0145.out	pout.99
coords_AH1_0007.out	coords_AH3_0026.out	coords_AH3_0086.out	coords_AH3_0146.out	slurm-17662242.out
coords_AH1_0008.out	coords_AH3_0027.out	coords_AH3_0087.out	coords_AH3_0147.out	stats_AH1.out
				stats AH2.out

 Output will be a 'coords' file for each AH and for each step, containing to coordinates of the AH surface, and a 'stats' file for each AH, containing convergence information (e.g. area and spin) for all timesteps.

4) What is the output? Part II - 'coords' files

coords	AH1_000000.dat ×						
#	theta	phi	r	chi	dx_chi	dy_chi	dz_chi
0	.0000000000	0.0000000000	0.4839762884	5.5056177192e-02	7.1150767569e-18	7.1015242298e-18	2.2786411876e-01
0	.3141592654	0.0000000000	0.4839941742	5.5085085743e-02	7.0672731933e-02	-8.8091426514e-20	2.1664488191e-01
0	.6283185307	0.0000000000	0.4840507182	5.5149123468e-02	1.3438728357e-01	6.6136332522e-18	1.8441576914e-01
0	.9424777961	0.0000000000	0.4841351993	5.5221840971e-02	1.8513333988e-01	2.6969529041e-18	1.3407117896e-01
1	.2566370614	0.0000000000	0.4842168287	5.5275258124e-02	2.1776052981e-01	4.6349642874e-18	7.0594833460e-02
1	.5707963268	0.0000000000	0.4842598993	5.5293492230e-02	2.2914994366e-01	3.8556939759e-18	-2.4070510568e-18
1	.8849555922	0.0000000000	0.4842168289	5.5275258178e-02	2.1776052986e-01	2.7240579584e-18	-7.0594833478e-02
2	.1991148575	0.0000000000	0.4841351998	5.5221841092e-02	1.8513333999e-01	5.1228552650e-18	-1.3407117903e-01
2	.5132741229	0.0000000000	0.4840507191	5.5149123687e-02	1.3438728371e-01	6.3696877634e-18	-1.8441576933e-01
2	.8274333882	0.0000000000	0.4839941758	5.5085086123e-02	7.0672732060e-02	5.6785088784e-18	-2.1664488230e-01
3	.1415926536	0.0000000000	0.4839762899	5.5056177544e-02	5.2177229551e-18	5.2041704279e-18	-2.2786411914e-01
0	.0000000000	0.3141592654	0.4859051601	5.5495880920e-02	5.3803532810e-18	5.3668007538e-18	2.2833166757e-01
0	.3141592654	0.3141592654	0.4870958848	5.5783990070e-02	6.7444169396e-02	2.1909965817e-02	2.1735972065e-01

'coords' files: contain the coordinate system information about the surface of the AH (spherical coordinates - theta, phi, r - above).
 With the parameters 'AH_num_write_vars = 2' and 'AH_write_vars = chi d1_chi' the example above also outputs the value of 'chi' and its derivatives at each point of the horizon. These can be diagnostic variables and include 1st or 2nd derivatives.

4) What is the output? Part III - stats_AH1.dat]] Ehic]]=[=]	
# 2. 2. 3.	stats_AH1.da time 00000000000 5000000000 0000000000 5000000		+00 1.7487064429e+0 +00 1.8423481166e+0	01 5.7151703384e 01 5.8982547674e 01 6.0541185337e	01 5.8982547673	e-01 3.3947220719e- e-01 6.7097940928e- e-01 2.2251144079e-	05 1.0990679865e-0 06 -5.1749065646e-0 05 4.3507303577e-0	8 -5.9239748341e 7 -1.0211252952e 7 -3.5360014956e	-05 -05 -05
	4.3 -4.9 -1.0	dimless spin-z (3389940102e-06 9873397381e-06 0015825320e-05 4701339056e-06	0.0000000000e+00 0.0000000000e+00	origin_x 6.1561971694e+00 6.2283372624e+00 6.3160466820e+00 6.4135201723e+00	origin_y 7.9999998311e+00 7.9999997328e+00 7.9999994787e+00 7.9999991857e+00	1.0867085297e-22 6 7.1447725409e-23 6	5.2343423711e+00 7. 5.3162350431e+00 7.	9999910394e+00 9999853858e+00	center_z 0.0000000000e+00 0.0000000000e+00 0.0000000000

- 'stats' files: print the area, spin and center of each found AH at each timestep
- 'origin' is the origin of the coordinate system used in the 'coords' file.

AHFinder – How to use

- **'center'** is an approximate geometric center of the surface found (an approximate location of the puncture).

AHFinder – How to use 4) What is the output? When it goes right... 6///0/00 Time = 0014.9333 Time = 0000.125020 15 10 5 z z 0 -5 $^{-1}$ -10 -2 -15 -3 -20 20 15 2 10 -20 -15 -10 -3 0 -2 -5 $^{-1}$ -5 0 0 -10 5 1 - 7 × 10 -15 2 15 -3 -20 3 20


Memories

AHFinder – Extra notes

- Finding other geometries (e.g. cylinder, 2D AHs like a string, etc.)
- Finding other surfaces (possible to find e.g. chi=0.3 surface)
- 'Postprocessing_tools' repo (if you want to use a checkpoint to find the AH after running)
- Other cools stuff

