
INTRO TO GRCHOMBO: THE BIG PICTURE

KATY CLOUGH

NUMERICAL
RELATIVITY:
BIG PICTURE

GR IN 2 MINUTES

NUMERICAL RELATIVITY

ds2 =
(

dt dx
)

(

f(x, t) h(x, t)
h(x, t) g(x, t)

)(

dt
dx

)

ds2 = f(x, t) dt2 + g(x, t) dx2 +

2 h(x, t) dt dx

{“The spacetime metric” gab(t, !x)

t
x

GR IN 2 MINUTES

NUMERICAL RELATIVITY

“Energy-Momentum”f(!2gab, !gab, gab)
“Curvature”

“Matter tells spacetime how to curve…”

Rab - R/2 gab = 8π Tab

Can rearrange into form (using ADM decomposition):
!t(!tgab)= f(!xxgab, !xgab, !tgab, gab, Tab)

where !tgab~ Kab

NR IN 2 MINUTES

NUMERICAL RELATIVITY

“local time”

initial data (!tgab, gab)

Fill using Einstein equation
!ttgab = f(!xxgab, !xgab,

 !tgab, gab, Tab)

boundary
conditions
(!xgab, gab)

“space”

NR IN 2 MINUTES

NUMERICAL RELATIVITY

“local time”

“space”
initial data (!tgab= 0, gab= Schwarzschild metric)

Fill using Einstein equation
!ttgab = 0 (boring!) *

boundary
conditions
(asymptotically
flat)

* in practise since the NR coordinates are not typically the Schwarzschild ones, we see some gauge evolution

GRCHOMBO:
BIG PICTURE
(FOCUS ON
PROGRAM FLOW)

GRCHOMBO IS A BIG CODE

GRCHOMBO BIG PICTURE

THREE LEVELS : CHOMBO / GRCHOMBO / BINARYBH

GRCHOMBO BIG PICTURE

▸ Chombo - overall program flow relevant to any initial
value problem - AMR, AMRLevel, ChomboParameters

▸ GRChombo - specific physics actions common to most
GR problems - GRAMR, GRAMRLevel,
SimulationParametersBase

▸ BinaryBH - specific actions relevant to the Binary BH
example - BHAMR, BinaryBHLevel, SimulationParameters

INHERITANCE

INHERITANCE

CHOMBO / GRCHOMBO / BINARYBH

GRCHOMBO BIG PICTURE

“time”

“space”
initial data (fields)

Fill using rhs
field(t+dt) = df/dt(field) x dt

boundary
conditions
(boundary
type ->
fields in
ghost cells)

diagnostics

Calculate derivatives using finite
differences, e.g.
df/dx(field) = [f(x + dx) - f(x)] / dx

CHOMBO DEALS WITH THE ADAPTIVE MESH REFINEMENT (AMR)

GRCHOMBO BIG PICTURE

Level 1

AMR TIME STEPPING

GRCHOMBO BIG PICTURE updating multiple levels

Advance Level 0

t = 0

Coarse solution
Level 0

t = 1

Initial Data Level 0

Fine solution
Level 1

t = 0.5

Advance Level 1

t = 0

Initial Data Level 1

(Improved) Coarse
solution

t = 1

Fine solution
Level 1

t = 1

Interpolated t = 0.5
data from the
coarse update
provides ghost cell
data for update of
finer cells at fine
boundary

Advance Level 0

t = 1

Advance Level 1

t = 1

Coarser cells
updated with

average of finer data
where they overlap

Repeats

Coarser cells
interpolated from
finer cells where

they overlap

▸ Each step is not really a single step but a
series of Runge Kutta (RK4) substeps

▸ Data from coarser level is interpolated in
both space and time to fill finer level ghost
cells at level boundaries

▸ Level 0 is not finalised until Level 1 is
=> coarser levels have to wait for finer ones
to end, so each level is processed in serial

Level 0

WHERE ARE THE KEY CHOMBO FILES?

GRCHOMBO BIG PICTURE

WHERE ARE THE KEY GRCHOMBO FILES?

GRCHOMBO BIG PICTURE

WHERE ARE THE KEY BINARYBH FILES?

GRCHOMBO BIG PICTURE

WHERE ARE THE KEY BINARYBH FILES?

GRCHOMBO BIG PICTURE

NB: These files are in “Source” as they are likely to be used for many examples
without modification. If you are using something very problem specific, you may want to put it in
the Example folder.

WHERE ARE THE KEY BINARYBH FILES?

GRCHOMBO BIG PICTURE

NB: These files are in “Source” as they are likely to be used for many examples
without modification. If you are using something very problem specific, you may want to put it in
the Example folder.

STRUCTURE OF AMR

GRCHOMBO BIG PICTURE

Level 1

Level 0

▸ Does setup (for restart or using initial data) and runs
evolution

▸ Knows about all of the levels, each function generally
cycles through each level from coarse to fine

▸ Contains hooks for physics class actions (occurring in
GRAMRLevel / BinaryBHLevel)

E.G. AMR::RUN() DOES THE EVOLUTION

GRCHOMBO BIG PICTURE

This is a hook we added to
manipulate data pre plots

Call the same function on each AMRLevel
in turn

This function runs the evolution,
after the amr object has been defined
and set up (which happens in the
Main_BinaryBH.cpp file)

STRUCTURE OF GRAMR

GRCHOMBO BIG PICTURE

Level 1

Level 0

▸ Inherits all functionality from AMR

▸ Adds in our GR specific tools, e.g. AMRInterpolator*

▸ Only contains things that happen globally across the grid,
so actually not that much. Most actions are local to a level.

(*OK, so this is not GR specific, but it did not exist in Chombo so we built it, and now it lives in GRChombo
because we don’t want to hack the Chombo code too much.)

GRAMR CLASS

GRCHOMBO BIG PICTURE

Inheritance of AMR functions

Function to exchange ghosts
on all levels

That’s it!

Timing the simulationFor extracting data on all levels

STRUCTURE OF BHAMR

GRCHOMBO BIG PICTURE

▸ Inherits all functionality from GRAMR

▸ Adds in BBH specific tools, e.g. Puncture Tracking

▸ Again not that long!

Level 1

Level 0

STRUCTURE OF BHAMR

GRCHOMBO BIG PICTURE

Inheritance of GRAMR functions (and so also AMR)

BH puncture tracking
control added

Setting interpolator
now needs to also set it
for puncture tracking,
(note this overrides
the one in GRAMR)

GRCHOMBO BIG PICTURE

Make a BHAMR object

Setup puncture
tracking which lives in
BHAMR

ALL THIS COMES TOGETHER IN MAIN_BINARYBH.CPP

GRCHOMBO BIG PICTURE

Setup using AMR
functions

Setup interpolator
using function in
BHAMR

AMR run function

AMR conclude function

ALL THIS COMES TOGETHER IN MAIN_BINARYBH.CPP

STRUCTURE OF AMRLEVEL

GRCHOMBO BIG PICTURE

Level 1

▸ Knows about its own level data, and has a pointer to the
coarser and finer levels above and below it

▸ Abstract base class to be overwritten by a “physics class”
i.e. GRAMRLevel / BinaryBHLevel

Pointer to level 2

Pointer to level 0

GRCHOMBO BIG PICTURE

Virtual functions which must be
defined in the physics class
(ie GRAMRLevel / BinaryBHLevel)

STRUCTURE OF AMRLEVEL

STRUCTURE OF GRAMRLEVEL

GRCHOMBO BIG PICTURE

▸ Inherits from AMRLevel and overwrites virtual functions
where these are common to most GR simulations

▸ Contains hooks for example specific actions (occurring in
BinaryBHLevel, prefixed by “specific”)

Pointer to level 2

Pointer to level 0

Level 1

STRUCTURE OF GRAMRLEVEL

GRCHOMBO BIG PICTURE

Overrrides the virtual function in
AMRLevel

Hook for example specific actions
e.g. in BinaryBHLevel

Communication with finer/coarser
level via pointers, e.g. here for the
overwriting of underlying coarser
cells

STRUCTURE OF BINARYBHLEVEL

GRCHOMBO BIG PICTURE

▸ Inherits all functionality from GRAMRLevel, overwrites virtual
functions where these are specific to BinaryBH example

▸ Adds in required BBH specific functions via the hooks like
specificPostTimeStep()

Pointer to level 2

Pointer to level 0

Level 1

STRUCTURE OF BINARYBHLEVEL

GRCHOMBO BIG PICTURE

Here is the hook we
saw in GRAMRLevel!

After each timestep
calculate the Weyl scalar
(happens on all levels)

m_level tells us which
level we are
so conditional on this
restricts action to that
level

KEY FUNCTIONS THAT WE SPECIFY IN BHBINARYLEVEL

GRCHOMBO BIG PICTURE

function required / optional Comment

initialdata() required define vars on initial grid

computeTaggingCriterion() required criterion for refinement

specificEvalRHS() required define evolution dvar/dt

specificPostTimestep() optional after level completes dt update

specificAdvance() optional happens in RK4 substeps

specificUpdateODE() optional happens in RK4 substeps

postRestart() optional done after checkpoint restart

preCheckpointLevel() optional before output checkpoint

prePlotLevel() optional before output plot file

FIND THIS AND MORE DETAILS IN THE WIKI!

GRCHOMBO BIG PICTURE

QUESTIONS?

